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WHAT IS NATURAL LANGUAGE PROCESSING?

• Natural language : language commonly used by humans to
communicate (english, chinese, arabic, french, ...), as opposed to
constructed languages as programming languages, for instance

• Processing : wide variety of ”process” : text & speech processing
(OCR / ASR), semantic analysis, discourse and argumentation
analysis, machine translation, question answering, ...
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CLASSIC NLP TASKS

Figure 1: NLP tasks families, from less to more abstract [Benoît Sagot]
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CLASSIC NLP TASKS

Speech image treatment
• Speech-to-text
• OCR (optical character recognition)
• Speech Segmentation (who speaks when)
• Text-to-speech

Figure 2: OCR Example
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CLASSIC NLP TASKS

Morphological analysis
• Tokenization
• Part-of-speech (POS) tagging
• Stemming/Lemmatization

Figure 3: POS-tagging example

7



CLASSIC NLP TASKS

Syntactic Analysis

• Dependency/constituency parsing
• Sentence tokenization

Figure 4: Constituency parsing
Figure 5: Dependency parsing
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CLASSIC NLP TASKS

Semantics (Word/Sentence level)

• Named Entity Recognition (NER), Named Entity Linking (NEL)
• Sentiment analysis
• Word Sense Disambiguation
• Relationship extraction
• Semantic Textual Similarity

Figure 6: Named Entity Recognition example

Figure 7: Named Entity Linking example 9



CLASSIC NLP TASKS

Discourse (Text level)

• Natural Language Inference (NLI)
• Coreference resolution
• Topic segmentation

Figure 8: NLI example
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CLASSIC NLP TASKS

Natural language understanding
• Text classification
• Summarization / simplification
• Machine Translation
• Question Answering

Figure 9: Simplification task example
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CLASSIC NLP TASKS

Figure 10: Example of QA, ”Google Natural Questions” Dataset
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CLASSIC NLP TASKS

How do modern NLP models perform currently?

• QA: Super-human performance of BERT [Devlin et al., 2019] and
later models on SQuAD 2.0

• MT: Human parity on English→ German translation [Toral, 2020]
• etc.
• NER: rapid growth in F1-metrics
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CLASSIC NLP TASKS

Figure 11: SQuAD 2.0 Benchmark
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CLASSIC NLP TASKS

Figure 12: SQuAD sample output
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CLASSIC NLP TASKS

Figure 13: Natural language generation with GPT-2 on GPT-2 Subreddit
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CLASSIC NLP TASKS

Figure 14: Natural language generation with GPT-2 on GPT-2 Subreddit 17



CLASSIC NLP TASKS

However, NLP is far from being ”solved”.

• Many issues with benchmark evaluation (who does the
evaluation datasets, how?)

• Still many hard tasks (multimodal settings, low ressource
settings, generalization problems)
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WHY IS NLP HARD?

• Ambiguity at all levels. NEL: I saw a jaguar in the street (animal
or car?), NER: I want to see Paris (Paris: B-LOC or B-PERS?)

• Sparsity : Zipf’s law.
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WHY IS NLP HARD?

Higher-level NLP also requires logic and reasoning, for which there is
no guarantee, even with large language models.

• Same example with GPT-2 :
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WHY IS NLP HARD?

• Large language models can add few digits, but not more than
this :
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A PARADIGM SHIFT : FROM CLASSIC
MACHINE LEARNING TO
REPRESENTATION LEARNING
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A SHORT PRIMER ON MACHINE LEARNING

Supervised
Learning
Train set
containing input
and
human-annotated
output. Models
learn from human
supervision. Two
main tasks :
classification
(categorical
output), regression
(numerical output)

Unsupervised
Learning
No
human-annotated
output : model
discovers patterns
in the data without
supervision. Two
main tasks :
clustering,
dimensionality
reduction

Reinforcement
Learning
An agent takes
actions in a given
environment and
receives a reward
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A SHORT PRIMER ON MACHINE LEARNING

Figure 15: Supervised Learning Process
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A SHORT PRIMER ON MACHINE LEARNING

Supervised learning example from real life : classifying french tweets
as critical of the government or not, during the Covid-19 pandemic.

Figure 16: A tweet that has been labelled as critical of the government
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A SHORT PRIMER ON MACHINE LEARNING

Aim : measuring consensus/dissents on lockdown/curfew measures

Figure 17: Inference results on 1.8M tweets
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A SHORT PRIMER ON MACHINE LEARNING

Supervised learning dataset:

• n couples Zi = (Xi, Yi), i = 1, ...,n iid ∼ P (unknown).
• Xi ∈ X (generally X = Rp) are called the inputs of the model
• Yi ∈ Y are the outputs of the model.

Objective: finding g : X → Y which minimizes the prediction error.
g is our model
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A SHORT PRIMER ON MACHINE LEARNING

Define l : Y × Y → R a loss function, such that l(y, y′) quantifies the
error when g predicts y′ whereas the true (human annotated) label is
y
We then want our model g to minimize:

EP[l(Y,g(X))]

29



A SHORT PRIMER ON MACHINE LEARNING

• Divide (Xi, Yi)i=1,...,n in (Xtrain, Ytrain) and (Xtest, Ytest) (sample
0.7-0.3 for instance)

• This train-test split process aims at testing the generalization
capacity of our model, which is trained on (Xtrain, Ytrain) and has
never see (Xtest, Ytest) during training.

• During the learning phase, an algorithm f, optimizes its
parameters θ such that Y is correctly predicted from X

• We would schematically like

Y ≃ fα(θ, X)

• The aim is the following : find θ̂ such that:

θ̂ ∈ argmin
θ

1
ntrain

ntrain∑
i=1

l(yi, fα(θ, xi))
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INTUITION BEHIND REPRESENTATION LEARNING

Until around 2013, NLP used to be seen as separated statistical /
machine learning tasks.
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INTUITION BEHIND REPRESENTATION LEARNING

Beginning in 2013, and being generalized around 2018,
”Representation Learning” changed the paradigm. Language models
would be pre-trained on a self-supervised task, and then fine-tuned
on many tasks.
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INTUITION BEHIND REPRESENTATION LEARNING

• self-supervised tasks are tasks in which part of the data is
hidden, and must be guessed from the rest of the available data

• No need of human-annotated data (costly)
• CommonCrawl : ”scan” of (many) web pages on the internet. In
November 2018 : + 220 TiB, 2.6 Billions scanned pages.

• Wikipedia Dumps (3.75 billions words just for English)

Idea : pre-training large (in terms of parameters) models on
self-supervised tasks, to obtain general linguistic and cultural
knowledge, then fine-tune only a small amount of parameters on
downstream supervised tasks.
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REPRESENTATION LEARNING OBJECTIVES

Two steps:

1. Pre-training
2. Fine-Tuning

We first detail pre-training objectives.
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REPRESENTATION LEARNING OBJECTIVES

Three historical pre-training objectives:

1. Skip-gram/CBOW
2. Language Modelling
3. Masked Language Modelling
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REPRESENTATION LEARNING OBJECTIVES

Skip-gram/CBOW objective: learning to predict a word from its
context window & vice-versa [Mikolov et al., 2013]

Figure 18: Self-supervised training objective from Word2Vec
[Mikolov et al., 2013]
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REPRESENTATION LEARNING OBJECTIVES

Language Modelling objective: learning to predict a word from
previous sequence of words. This is for instance the pre-training
objective of GPT [Brown et al., 2020]

Figure 19: Language Modelling training objective
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REPRESENTATION LEARNING OBJECTIVES

Masked Language Modelling objective: learning to predict random
masked words from the context. [Devlin et al., 2019]

Figure 20: Masked Language Modelling training objective
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REPRESENTATION LEARNING OBJECTIVES

Skip-Gram/CBOW LM MLM
Period 2013 2014-2017 2018-2021

Representation-level Word-level Sentence-level Sentence-level
Linguistics Firth Rule Data compression Cloze task

Neural architecture Feed-forward LSTM Attention/Transformers
Popular models Word2Vec ELMO BERT

Table 1: Summary of self-supervised learning objectives
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APPLICATION : USING LEARNED
REPRESENTATIONS TO LEARN AGAIN
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A TAXONOMY OF TRANSFER LEARNING

In the previous section we detailed pre-training objectives, which are
self-supervised. They require lots of raw textual data, and acquire
morphological, syntactic, semantic, and even cultural knowledge
from it.
What to do next with this pre-trained model?
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A TAXONOMY OF TRANSFER LEARNING

Figure 21: Taxonomy from [Ruder, 2019]
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A TAXONOMY OF TRANSFER LEARNING

• Sequential transfer learning only in this course
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DOWNSTREAM TASKS - REFRAMING TASKS

A downstream task is a task on which a model is fine-tuned, in a
sequential transfer learning setting. If we want to train a
POS-tagging model using a pre-trained (self-supervised) model,
POS-tagging will be considered as the downstream task.
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DOWNSTREAM TASKS - REFRAMING TASKS

Most of classic NLP ”downstream” tasks can be formulated in one of
these three settings:

• Sequence Classification
• Sequence Labelling
• Sequence to sequence (Seq2Seq)
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DOWNSTREAM TASKS - REFRAMING TASKS

Sequence classification

Sequence→ Label

Quoi? Y a des lobbies qui font
pression sur le gouvernement
??? On m’aurait menti?? ce n’est
pas comme si ce n’était pas le
cas en ce moment... labo

→ Critique gvt

À noter que ce mercredi à 17H
InfoTV et un collectif de jeunes
médias vous propose un clip de
remerciement aux soignants.

→ Non critique gvt
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DOWNSTREAM TASKS - REFRAMING TASKS

Sequence Labelling

Sequence→ Sequence of labels, same size

Trump tells mob that stormed
US Congress ”we love you” as
Biden condemns ”siege”

→ B-Pers O O O O B-ORG I-ORG O
O O O O O B-PERS O O O O

Toujours est-il que l ’ un des
adversaires du gouvernement
pouvait dire peu après dans les
coulisses : ” Somme toute, on
recherche maintenant les ab-
stentions que l’on repoussait du
pied il y a trois jours. ”

→

O O O [OFF] [OFF] [OFF] [OFF]
[OFF] [OFF] [OFF] [OFF] [OFF]
[OFF] [OFF] [OFF] [OFF] [OFF]
[OFF] O O O O O O O O O O O
O O O O O O O O
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DOWNSTREAM TASKS - REFRAMING TASKS

Sequence to Sequence

Sequence→ Sequence, potentially different size

The weather is nice → Il fait beau

340+ 350→ 690
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A SIMPLE WORKING EXAMPLE

Suppose we want to classify sentences as critical or non critical.

Word2Vec⇔ Skip-gram pre-training objective + 1 hidden layer
feed-forward network

⇒ Learns dense vectors for any word of the vocabulary.
50



A SIMPLE WORKING EXAMPLE

Dense vectors learned with Word2Vec are called word embeddings

macron =



0.678
...

−0.972
0.467
0.345
...

0.013


, covid =



0.365
...

−0.863
0.234
0.890
...

0.035


,∈ Rd,∈ Rd

Compositionality : word embedding operations are linguistically
meaningful
Word embedding distances are linked to semantic similarity
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A SIMPLE WORKING EXAMPLE

1. Macron devrait plutôt avoir peur du coronavirus, il ne peut
pas être arrêté par les fdo

2. Très utile merci ! Préparons-nous et protégez-vous chers
soignants.

→ Can be transformed to sequences of word embeddings
→ How to treat sequences (of different length)?
Averaging, TF-IDF aggregation yields poor results→ Bag of words
(BOW) approach, no taking into account word order, syntax, ...
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A SIMPLE WORKING EXAMPLE

Solution : Recurrent Neural Networks (RNN)

• RNN are designed to handle sequential data
• However, they work better with dense vectors than with
one-hot/TF-IDF/BOW encoding

Figure 22: Scheme of a LSTM cell
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A SIMPLE WORKING EXAMPLE

Figure 23: An end-to-end architecture for sequence labelling

For sequence labelling, we keep all outputs, for sequence
classification we only keep the last output.
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OPEN QUESTIONS AND CHALLENGES
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OPEN QUESTIONS AND CHALLENGES

Main challenges :

• Is larger the better? BERT-large has 355 M parameters, GPT-3 has
175 B parameters. DistilBert has 66M. There is no guarantee that
larger models don’t just learn by heart the data.→ Model
distillation /compression

• RNNs, Transformers, are totally black box models.
• Non-algorithmic work: the way datasets are collected
annotated are in the spotlight. GPT models are trained on a
dataset including Reddit, which yield problematic gender
biaised/racist results. SQuAD and other datasets have been
criticized for being ”too easy”. Experiments run on SNLI show
that there are high inter-annotator disagreement on many
training samples.
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